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the solution of problem (9), (10) ; Eg == const > 0.’ 
If the premises of Theorem 4 are fulfilled, estimate (32) for w yields the following 

relation for IL (t, x, 7~). We write u/l1 c[ 

5 (2 
IFi (L, s) p -'/Pi l/2 

J 

-1 

a$* (u/ I', t, x) =: (IS 

" t--o 

where I’i (4, n) dre the solutions of system (30) with conditions (31). Then 

1 ;pbq* (11 II) I!, t, s) P - 1 [ < El0 t”‘(@l), I.&= const >o (41) 
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In [1] the authors have proved a theorem on the existence of solution of the Cauchy’s 
problem for linearized equations corresponding to the problem of motion about a fixed 

point of a rigid body, with a cavity partially filled with a viscous incompressible fluid. 

In the case of small Reynolds numbers (high viscosity fluids), these equations will con- 
tain a small parameter e = v-1 and the Krylov-Bogoliubov asymptotic method given in 
[2] can be used to solve the system of Navier-Stokes equations. In the present paper we 

derive formulas for the corresponding approximate solutions. The case of a highly vis- 
cous fluid filling the cavity completely was investigated by Chernous’ko in [3 and 41. 

1. Statement of the problem. We assume that a body with a cavity parti- 
ally filled with a viscous incompressible fluid performs a given motion about a fixed 
point with an instantaneous angular velocity 0. It is required to determine the motion 
of fluid in the vessel. In the linearized formulatron this problem reduces to solution of 
the following system of Navier-Stokes equations : 

in the region $2 filled with fluid in the state of equilibrium, with the boundary conditions 



Asymptotic method in the problem of oscillations of a viscous fluid 443 

u-o (1.2) 
given on the part l?,of the boundary of Q corresponding to the cavity wall, 

given on the free surface r, of the fluid, and with the initial conditions 

u IL=0 = uo, Q If=0 = 40 t 
q+-gz+c) (1.4) 

Here u is the vector of relative velocity of the fluid, r is the radius vector relative 
to the fixed point, p is the pressure, g is the acceleration due to gravity, p is the den- 

sity, v is the kinematic coefficient of viscosity and C is a constant. 
We naturally assume that at high viscosities, motion of the fluid will consist of three 

components: a forced motion caused by the forces responsible for the given motion of 

the body ; a rapidly decaying motion connected with the initial distribution of velocities 
and a slowly decaying motion related to the initial position of the free surface. 

The asymptotic method proposed below enables us to split the solution of the considered 
problem into three parts indicated above. 

2. Asymptotic method of solution. We consider the following differen- 
tial equation in a Banach space : 

(2.1) 

Here A is an infinite generating operator of a contraction semigroup, operators B,are 
bounded and functions fk are given. Since Eq. (2.1) differs somewhat from those discussed 

in [Z]. we give a brief derivation of the asymptotic expansions for its solutions. 

In deriving these asymptotic expansions in the powers of a small parameter E we 
encounter two distinct cases. when the operator A has a bounded inverse and when it has 
not. 

1) Let the operator A-l be bounded. Then solutions of the homogeneous equation (2.1) 
are rapidly decaying functions of t and we can seek a particular solution of the inhomo- 
geneous equation in the form 

z (t) = ho (t) + &hl (t) + &%, (t) + . . . (2.2) 

Inserting (2.2) into (2.1) and comparing the coefficients E of like powers we obtain 

ho = A-f", h,,, = A-’ 
d’l k 

7 - fkil -i Bihk_i) 
i=O 

(2.3) 

Solution z (t) = ho (t) + chl (t) f . . . + eavhN (t) differs [2] from a certain 
particular solution of (2.1) by a quantity of the order of E Y’l. 

2) When the operator A has no bounded inverse, the case becomes much more com- 
plicated. Let us assume fhat the number 0 represents an isolated point in the spectrum 
of A. Then we can express the whole space E in the form of a simple sum E=E, _t E2 
of two subspaces invariant with respect to the operator A , in such a manner that the 
spectrum of contraction of A and E, lies within the left semiplane, while the spectrum 
of its contraction on E,consists of a single null element. A bounded inverse of A exists 
however on El. 
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In the case under consideration the homogeneous equation 

‘da: 
edt= AX+EBX (B = ; EkBk) 

k=o 
(2.4) 

will possess both, the rapidly decaying solutions and solutions changing slowly with time. 
To separate these two types of solutions, an analog of the Krylov-Bogoliubov method is 

used. 
Let us denote by P, and P, the projection operators acting on the subspaces E1 and E,, 

corresponding to the decomposition E = E, + E,. Solutions z (t) appear in the form 
IL: (t) = zr (t) + ~a (t) where x1 (t)’ is the rapidly decaying and x2 (t) is the slowly 

changing part of the solution. 
Functions are constructed according to the formulas 

xi (t) = Yi (t)Ui (L)P,x, (2.5) 

where CTi is an operator satisfying 
deli 

E 7 = APi Ui+ ESiUiy U,(O) = Pi (2.6) 

Insertion of (2.5) into (2.4) with (2.6) taken into account yields the following equa- 

tion for yi : 
E ~ p, _ AI’iPi - l’i_4Pi- EYiSiPi f EBYiPi (2.7) 

operators Si and Yi are now sought in 

Si = ~, EkSih’, 

the form of series 
CC 

k=o 

Insertion of (2.8) into (2. ‘7) yields the 
ficients of expansions : 

yi = p, + 2 E”Yik 
:.=1 

(2.8) 

following system of equations defining the coef 

dY.1’ 
+ pi = L.l yik’lpi _ y/qpi - p&pi - 

-i jei’Sik-jPi + i Bk-jE’,‘P. 

(2.9) 
1 

j=1 3=0 

Let us assume that the operators l7i1, . . ., Yi” and Sio, , . ., SC-l are already 

determined in such a manner that 

Yi’ = (I -Pi) YijPi (i z 1, . . . . k), S,’ _ P,Si’Pi (I = 1, . . . . . /C-- 1) 

and let us find from (2.9) the operators Yi”+l and Si” satisfying the relations 

y;+1= (I - Pi) Yih+l Pi, Sik = P,l’i,kP, 

Operating with Pi on (2.9) we obtain 
1. 

Si” = r .~iBI;-iYijPi (2.10) 
I=0 

. 
while the operator I - Pi acting on (2.9) yields 

(2.11) 

j=l J=o 



Asymptotic method in the problem of oscillations of a viscous fluid 4.45 

By the general theory (see e. g. @I. ch. 4, Lemma 3.1) the equation obtained has a solu- 
tion. It can easily be seen that when the operators Bh.are constant, Yik are also indepen- 

dent of t. 
Thus, the problem of obtaining the Nth approximation to the function Xi (t) is reduced 

to consecutive solving the operator equations of the form (2.10) and (2. ll), and conse- 

quently to solution of the differential equation 

We then have 

dU.” 
N-l 

E 1 = ,4 PiUiN + & ~ E’Si;CTiN, 
dt J=o 

xiN (t) = 5, eiY.jU.NPi~O 1 % 

Ui” (G) = Pi 

(2.12) 
j=o 

This solution does not generally satisfy the initial condition xi (0) = Pi x0. In fact 
7X 

XiN (0) = PiS, + 2 EiYij (0) Pg, 
j=l 

We note that the discrepancy in the initial condition belongs to a subspace comple- 
mentary to Ei. A method of consecutive elimination of this discrepancy is given in p] 
and we apply it below to a particular case. 

We seek the particular solutions of the inhomogeneous equation in the form 

x* 0) = y,v2 (t> + h (t> 
where h (t) is defined from E, and us (t) is a solution of the equation 

dvz 
e dt = APans + e&va + g 

where g is an auxilliary function defined in ,!?a. 

The requirement that Y, and S, again satisfy (2.9) with i = 2, yields the following 

equation for h 
d$= Ah+eBh+f-Yzg 

Assuming that 

f = f. + fle + fi3 + . . ., B = Bo + BYE + B& + . . . 

we seek the functions h and g in the form of expansions 

h (t) = ho (t) + Ehl (t) + c2h2 (t) + . . . 

g (t) = go (t) + WI (4 + e2g2 tt> + * * * 

whose coefficients are defined by 

Ah, = P,go - fo 
1: k 

dh 
h’ = Ahg+l + 2 Bl;_jhj + fk+l - 2 Y 2”-ji16; - P&I,+1 
dt 

j-0 j=o 

Applying the operators Prand P, = I - PI to these equations and taking into 
account the fact that P2hj = 0 and Prgj = 0, we find 

k 

go = PPfOt gh.+1= _ PO 21 &hi + Pzfkil (2.13) 
j=O 

k k 

ho = - _~l-lPlfO, ?~h.,.~ = Al-l dh, -~ c1t 
-P,z B,;-,hi-PPljh.;1-P1~Y2h’-i+’ 

1=0 3=0 
&} 
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where A, denotes the contraction of the operator A in E,. 
Thus, to obtain theNth approximation to some particular solution of (2. l), we must 

find the functions hj and gj from (2.13) and consequently solve the equation 

&-o~v 
IA-1 N 

e-- = AP,v,‘~ + E 2 E”&%,~~ + x $g, r1t (2.14) 
h=o k=o 

in the subspace E, with an arbitrary initial condition (e. g. 7,~~~ (0) = 0), whereupon 
the formula N N 

PY (t) = 2 EY,‘LI,” (t) + 2 &‘V$ 
j=o 

(2.15) 
ii=0 

gives the required Nth approximation. We note that all the terms on the right side belong 
to E,except P,v,~ (t). 

The sum of approximate solutions (2.12), (2.15) obtained, satisfy Eq. (2.1) with the 
accuracy up to the terms of order of Eiy+i. As already indicated in p], this implies that 
the approximate solution differs from some actual solution by a magnitude of the order 

of EN-l, consequently the only reliable terms in (2.12) and (2.15) will be those contain- 
ing E raised to a power not greater than N - 2. 

3. Motion of a fluid completely filling the cavity. If a fluid fills 
the cavity completely, then the system of equations (1. l)-( 1.4) becomes simpler as con- 
ditions (1.3) no longer apply. It was shown in [S] that the resulting problem can be trea- 
ted as the Cauchy’s problem for the following differential equation: 

u (Cl) I”g (3.1) 

in the Hilbert space Ai , i.e. as the closure in L, (52) of the set of all smooth selenoidal 
vector fields satisfying the condition ( u, 1 rl = 0. Here P is an orthogonal projection 

operator from L, onto iv and A is a positive detinite self conjugate operator in iV. In the 
equation 

(3.2) 

obtained from (3. l), the operator A has a bounded invei:e and conditions of the simple 
case (1) hold. Consequently. by (2.2) and (2.3) the approximate solution of (3.2) has 

the form 
uN = i Eh’hP (t) I ( 

h’=o 

Limiting ourselves to the first approximation we have 

u’=E.4-+ $) (3.3) 

Determination of the operator &A -‘p demands solution of the following problem: 

A solution in the form of (3.3) was obtained 
that the solution of (3.4) can be written in the 
kovskii potentials”. 

div u = 0, u/r1 = 0 (3.4) 

in [3] by Chernous’ko. who also showed 
form of a sum of the “generalized Zhu- 
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4, Motion of fluid partially filling the cavity. In this case the equa- 
tions of the problem can also be written in the operator form [l, 6 and 71 

g+YA+g >:r ~0, 
j 

v -5; +grru = 0, u=s+w (4.1) 

where u, s and w are functions defined on the space lY20’ (Q), the latter being the clo- 
sure in the S, L. Sobolev space lV,l ( s2) of the set of solenoidal vector fields, becoming 
zero near the 1‘r part of the boundary. We shall describe the operators A, n, T and r 

later, now only remarking that the operator A is again positive definite and self conjugate. 
After the substitution 

u = A-‘,?g, s = ‘4’ ‘11, w ZZ Z4-‘!‘5, &=y-l , x=q 
0 

(4.2) 

we can write (4.1) in the form analogous to (2.1) 5 

dX 
E -=A,,X+E~B~X+E~~, 

dt Bl= fi 

Q = A’.“TI’/-“? (4.3) 

Whole of the space E of vectors X can naturally be expressed as a simple sum of two 
subspaces El and E, composed, respectively, of vectors of the form {n, CJ) and {O, 5). 
In El the operator A0 is negative definite and has a bounded inverse 

Ao-,=(-‘:,l “) (XER) 

In E, the operator A0 is identically equal to zero, therefore the projection operators 
Pr,and P, have the form I 0 

PI= 
II II 0 0’ 

Following the scheme given in Sect.2, let us limit ourselves to the third approxima- 
tions to the solution of (4.3). From (2.10) and (2.11) we find 

y,(a) = Pr, xl(“) = 6; I’r(r) = 6, xl(r) = P$,Pr; y&a) = P,BrPr, &‘r(‘) = 6; l’r(:‘) = 6 

Expressing the operators in matrix form we obtain 

~~(0) = pl, s;O) = n; yl(l) zzz (I, s1 (1) _ gQ iI - 
II !I 0 (I 

E-p’ _ u 

-I! 

til 

,g@n-l Ii 0 ’ 
s1’2) = 0. yl’:o = (, 

In a similar manner we obtain 

EI?((‘) ZZY P? ) &(O) = 0; y.(t) zxz 0, 

Differential equations (2.6) for the operators U1t3) and U,@ now become 
&J (3) E -- /fopg,Ji’:~) + &yi(l)~‘p), 1 

dt 
U,(“‘( (I) :z pi 

or in the subspaces El and E’, , 
CK1’” 

dt 

. _ A&l::) + E”gQ~,(“), &(“) (0) _ 1 

dU.,(“) 
E - - _&,gQ&‘3 

dt - t 
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Thus, we have split the basic differential equation into two equations, first of which 
has rapidly decaying solutions while the other has solutions varying slowly with time. 

For the third approximation to the solution of the homogeneous equation correspond- 

ing to (4.3) we obtain 

For a particular solution of the inhomogeneous equation, (2.13) and (2.14) yield 

hO=O, go = 0; hl= A-VI, gl -zzz 0; hz = - ..J-2 $. , g? = 0 

and we then have 

X’(3) = V1C3) I I “3(3) ’ 
vl(“’ = ,sg.4-1Q~2(~) 

where v,(s) is a solution of the following differential equation: 

dvtc3) 
E - = - evgQv&3’- Eg@;@-“‘n (r X +) , 

dt 
v2c3) (0) zz 0 (4.5) 

Operator Q appearing in this equation is a nonnegative self conjugate operator in the 
space WsO’ (see e. g. [6 and 71). It can easily be seen that it becomes positive in the 
subspace E,. 

The sum X3 + X'3 gives the third approximation to some solution of the inhomogen- 
eous equation, but, as we have already remarked, its only reliable terms will be those 

containing e in the degree not greater than first, Thus, the approximate solution differ- 
ing from the exact one in terms of order of ea,is 

I 

U&lo + eA”“II r x J$ 

u2% ( ‘1 

in obtaining which we have assumed that the solution of the problem (4.5) is of order 
of as. 

The solution just obtained does not satisfy the given initial conditions. Indeed, when 

t = 0, its components are, respectively, 

( lo + E.‘i-“‘n k X (G),,) ,o 

It follows therefore that such approximate solution should be deduced from it, which 
would satisfy the homogeneous equation (4.3) with the accuracy of up to the terms of 
order of e2 and which would have the initial value 

Such a solution can be constructed from (4.4) by replacing ,!~i(~) with U1(‘) which in 
this case coincide (since Si (a’ = 0). Retaining again only the reliable terms, we obtain 
the final formula for the first approximation to the solution of the problem under consid- 
eration 
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X== 
I$31 (Tjo - Ez‘+n[ 

Performing the substitution (4.2) and taking into account the fact that n = s -!- w, 
we find 

L( ==,l 4. A-““&(““-l”?w, (4.6) 

First term of this formula describes the rapidly decaying motion, second term the forced 
motion and the third term - the slowly decaying motion. Discarding the rapidly decaying 
terms we obtain u = A-“‘U2(3)A’!2W* + s/l-‘rI (r x Lg_ ) (4.7) 

We shall now describe the procedure of obtaining the first approximation El. 6 and 81. 
Forced motion. We solve.the following boundary value problems 

- VAsi -+ ‘(Jpi = r X ei, div Si == 0, si =: 0 on 1’1 

ifsi,, J_ a% _ r) %x as. (7s. 
-- 

-z- ’ ay ‘-z 
+-..2$.=0, --pi+ Sv-._$‘=O onPO 

where ei denote unit vectors along the axes. 
Then the relative velocity of the forced motion will be equal to 

up, = EIS?, + e2S2 + QS3 

where &i are the projections of the angular acceleration of the body on the axes of the 

moving coordinate system. 

If the problem calls for the detrmination of pressures appearing in the fluid, then we 
must solve the boundary value problems for the Laplace’s equation 

Then 
AT,-- 0; a),=0 on P1, a(Pi=(rxeJ on po 

Pressure p is given by 
II rx’$ = J$ 

dn 

( ) 
ei (r x ei - grad cp,) 

11 

p = pgz + PIeI fP1 - cplf + 82 @2 - f&f + 83 fP3 - v3)l 

Slowly decaying motion. Operator function V = A’/zU,aA’/a is a solution of 

dV/dt = --gTW, v (0) = I 

Using the classical terminology we can now formulate the rule for obtaining a solution. 
Solution of the following problem is required : 

-vAw + y7p = 0, div w = 0, w=o on rl 
aw, aw aW 
_._+g=o, _&!=o; a at ( -pp+v 2 

> 
= - gt+ on PO 

Then the relative velocity of a slowly decaying motion is: f 

u3=w0+ wdt 
s 

Free oscillations, When considering the problem of fre: oscillations of a strong- 
ly viscous fluid in a motionless vessel, we can utilize the expression (4.7) with o = 0 
to obtain normal oscillations proportional to e -At . In the case of slow oscillations, the 
quantity h is the eigenvalue of the self conjugate problem 

-_y Aw + VP = 6, div w = 0; w=O onr, 

awz aw, a% I 3-0 
-&+T==P’ -yjy 1 @/ h -p+2va~ =gwx 

( > 
on Jo 

To determine the rate of decay of the rapid motions we must consider the first term 
of (4.6). The operator function S = A-‘inU1(Sf AliB satisfies the equation 

dS e - = - ..iS + e2gTI’S, 
dt 

S(O)= z 
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which can be replaced by another, simpler equation 
dS 

Edt=- 
11s 

with the accuracy of up to the terms of order of ~2 . 
For normal oscillations the problem is 21As = lis 

and using the classical formulation we obtain the following self conjugate eigenvalue 
problem - VAS + Ap = hs, div s = 0, s=O 0nIr 

6. Combined motion of the body and fluid, Equation of angular mo- 
meutum for the system “body+fluid” has the form [l and 91 

I$+$ (rx$)W-M=O 

61 , 

M = mga (he1 + be%) + pg (kl x , rfdr,) \ 

(5.1) 

(5.2) 

where m is the mass of the system, a is the distance betweei’the center of mass of the 
system and the fixed point, hi are the components of the angular displacemerit vector in 
the moving coordinate system, JQ is the unit vector along the moving 0~ axis and z = 
= f (5, y, t) is the equation of the free surface in the moving coordinate system. 

When the velocity of motion is known, the function f is given by 

(5.3) 

Inserting the expression (4.6) for the velocity u into (5.1)-(5.3), we obtain a third 
order differential equation defining the components of the angular displacement vector 
of the body in the first approximation 
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