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the solution of problem (9),(10); £, = const > 0.°
If the premises of Theorem 4 are fulfilled, estimate (32) for w yields the following

relation for u (¢, z, y). We write WU q )
D *(u/U, 1, 2) = .\ <E Y (x, 8) g e 1/2) ds
4] 1==0

where Y; (€, ) are the solutions of system (30) with conditions (31). Then
[y AD* (U, 1, x) 0 — 1| < Egg t 0D Eyg= const >0 (41)
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In [1] the authors have proved a theorem on the existence of solution of the Cauchy's
problem for linearized equations corresponding to the problem of motion about a fixed
point of a rigid body, with a cavity partially filled with a viscous incompressible fluid,
In the case of small Reynolds numbers (high viscosity fluids), these equations will con~
tain a small parameter & = v71 and the Krylov-Bogoliubov asymptotic method given in
[2] can be used to solve the system of Navier-Stokes equations. In the present paper we
derive rformulas for the corresponding approximate solutions, The case of a highly vis-
cous fluid filling the cavity completely was investigated by Chernous'ko in [3 and 4].

1, Statement of the problem, We assume that a body with a cavity parti-
ally filled with a viscous incompressible fluid performs a given motion about a fixed
point with an instantaneous angular velocity . It is required to determine the motion
of fluid in the vessel. In the linearized formulation this problem reduces to solution of
the following systemn of Navier-Stokes equations:

%t‘i_}_,_{f;) Xr=—vyq + vAu, diva=20 (1.1)
in the region Q filled with fluid in the state of equilibrium, with the boundary conditions
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u = (1.2)
given on the part T'; of the boundary of (2 corresponding to the cavity wall,
du du du du F) du
= —Z = " — %2 =0, —{g—2 z) — 1:
7z T =0 T w Y w <q =V 5 > =gu, (1.3

given on the free surface I'; of the fluid, and with the initial conditions
ul—p =ty qli=mo=4o (qz ~§——gz+C> (1.4)

Here u is the vector of relative velocity of the fluid, r is the radius vector relative
to the fixed point, p is the pressure, g is the acceleration due to gravity, p is the den-
sity, v is the kinematic coefficient of viscosity and C is a constant,

We naturally assume that at high viscosities, motion of the fluid will consist of three
components: a forced motion caused by the forces responsible for the given motion of
the body ; a rapidly decaying motion connected with the initial distribution of velocities
and a slowly decaying motion related to the initial position of the free surface,

The asymptotic method proposed below enables us to split the solution of the considered
problem into three parts indicated above,

2, Asymptotic method of solution, We consider the following differen-
tial equation in a Banach space:

[o0] [o.0]
s%; = Ax + e? e B (t)z + D etfi(t) (2.1)
h=0 k=0

Here A is an infinite generating operator of a contraction semigroup, operators B, are
bounded and functions f, are given, Since Eq, (2, 1) differs somewhat from those discussed
in [2], we give a brief derivation of the asymptotic expansions for its solutions,

In deriving these asymptotic expansions in the powers of a small parameter € we
encounter two distinct cases, when the operator 4 has a bounded inverse and when it has
not.

1) Let the operator A1 be bounded. Then solutions of the homogeneous equation (2.1)
are rapidly decaying functions of # and we can seek a particular solution of the inhomo-

eous equation in the for
geneous equation in the form 2 (8) = hy () 4 ey (&) + ethy () - - . . 2.2)

Inserting (2, 2) into (2. 1) and comparing the coefficients ¢ of like powers we obtain

k
dF ‘ ’
ho = A7y, Rpyq = A'1< dllk ——fku—-Z Bihk—i) (2.3)

=0

Solution z (¢) = h, (¢) + ehy (£) 4 . . . |- €Vhy (¢) differs [2] from a certain
particular solution of (2, 1) by a quantity of the order of &Y',

2) When the operator A has no bounded inverse, the case becomes much more com-
plicated, Let us assume that the number 0 represents an isolated point in the spectrum
of A, Then we can express the whole space E in the form of a simple sum E=F, -+ E,
of two subspaces invariant with respect to the operator 4 , in such a manner that the
spectrum of contraction of A and £, lies within the left semiplane, while the spectrum
of its contraction on K, consists of a single null element, A bounded inverse of A exists
however on £ .
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In the case under consideration the homogeneous equation

oo
efli = Az + &Bzx (B = D 8kBk> (2.4)
k=0
will possess both, the rapidly decaying solutions and solutions changing slowly with time,
To separate these two types of solutions, an analog of the Krylov-Bogoliubov method is
used,

Let us denote by P, and P, the projection operators acting on the subspaces £;and E,,
corresponding to the decomposition £ = E; + E,. Solutions z () appear in the form
z (t) = , (8) 4 x5 (¢) where z; (¢) is the rapidly decaying and x, (¢) is the slowly
changing part of the solution,

Functions are constructed according to the formulas

z,() = Y, (U, ()P, (2.5)
where U, is an operator satisfying
e Wt AP, Uit eSiU, Uy(0) = (2.6)
Insertion of (2, 5) into (2, 4) with (2. 6) taken into account yields the following equa-
tion fory, : dyy ,, __ AY,P, — Y, AP, — &Y, S;P; -+ eBY P, (2.7
Operators S; and Y; are now sought in the form of series
Si= S sk, Yim P T v (2.8)

l=1

Insertion of (2. 8) into (2. 7) yields the following system of equations defining the coef
ficients of expansions

dY ! ki1 E+1 k
‘AiY P Y,', Ilp.i—PiSi Pi_
b k (2.9)
I 2 )'i’Sik_jPi + Z Bk_j}',i7p.l
j=1 =0
Let us assume that the operators Y3, . . ., Y3 and 8,0, ..., §;*! are already

determined in such a manner that '
Yi/=(U—P)Y/P; (j=1,...h), 8/ =PS/'P; (=1, .., k—1)
and let us find from (2. 9) the operators Y;** and S;* satisfying the relations
Y =1 —P)Y P, S = PP,
Operating with P, on (2,9) we obtam

}‘ PB YD, (2.10)
=0

while the operator [ —‘Pi acting on (2, 9) yields oY L

+ E+1 ¢ !
[—P)AY =Y AP = —— Pi
( v (2.11)

}L. ]' '
+ Z Y8 P — Z (I — Py) BiYi'Py

j=1 =0
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By the general theory (see e, g. [2], ch. 4, Lemma 3, 1) the equation obtained has a solu-
tion, It can easily be seen that when the operators B, are constant, ¥;* are also indepen-
dent of t.

Thus, the problem of obtaining the Nth approximation to the function ; (f) is reduced
to consecutive solving the operator equations of the form (2. 10) and (2. 11), and conse-
quently to solution of the differential equation

N—1
av,N "o .
e APUN +e 2 e'S7ULY, UM (0) =
+=0
We then have N
xiN (t) = 2 E]Y.;",U,;.Npixo (2.12)
=0
This solution does not generally satisfy the initial condition z; (0) = P; ;. In fact
N
;N (0) = Pyzo + D) €'Y (0) Pyxg
=1

We note that the discrepancy in the initial condition belongs to a subspace comple-
mentary to E;. A method of consecutive elimination of this discrepancy is given in 2]
and we apply it below to a particular case,

We seek the particular solutions of the inhomogeneous equation in the form

2t (1) = You, (8) + A ()
where A (¢) is defined from E, and v, (f) is a solution of the equation
d
Uz = APy, + &Sqv, + ¢
where g is an auxilliary funcnon defined in £,
The requirement that Y, and S, again satisfy (2, 9) with i= 2, yields the following

equation for h _{%_: Ah L eBh 4+ f—Yog
Assuming that
f=fc+he+fe?+ ..., B=DBy+ Bie+ Bye* + ...
we seek the functions # and g in the form of expansions

h(t) = hy (t) + ehy () + ehy (£) + . . .
g (t) = go () + egy (t) + &%, (1) + .

whose coefficients are defined by
Ahy = Pygy — o

k
dh,, Nt k—j+1
-d-t—: Al oy + 2, D! Bi_j h + frn— 2 > Y, g; — P11
f=0 j=0
Applying the operators P;and P, = I — P; to these equations and taking into
account the fact that Pyh; = 0 and P;g; = 0, we find

k

= Pofo, Srer 7= P‘-’Z By h; + Pofri (2.13)
i=0
h
hy = — Ay Pyfo, By = Ay {dhh — P, D) Bk _Plf;nl—PIZ Y," ]ﬂgi}

J)=0 =0
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where A4, denotes the contraction of the operator 4 in E,.
Thus, to obtain the Nth approximation to some particular solution of (2, 1), we must
find the functions hjand g; from (2,13) and consequently solve the equation

N1
d;; = APw,N ¢ Z PN /.UzN +- Y" Sl;gk (214)
k=0 puit
in the subspace K, with an arbitrary initial condition (e.g. »,V¥ (0) = 0), whereupon
the formula . N N
FV () = 3 ey () 4 S) e, (2.15)
j=0 k=0

gives the required Nth approximation. We note that all the terms on the right side belong
to E, except Pyv,N (t).

The sum of approximate solutions (2, 12), (2. 15) obtained, satisfy Eq, (2. 1) with the
accuracy up to the terms of order of ¢¥¥i, As already indicated in [2], this implies that
the approximate solution differs from some actual solution by a magnitude of the order
of e¥71 consequently the only reliable terms in (2, 12) and (2, 15) will be those contain-
ing & raised to a power not greater than N — 2.

3., Motion of a fluid completely filling the cavity, If a fluid fills
the cavity completely, then the system of equations (1. 1)—(1. 4) becomes simpler as con-
ditions (1, 3) no longer apply. It was shown in [5] that the resulting problem can be trea~
ted as the Cauchy's problem for the following differential equation:

du d®

._Ez_:——vAu—{—P(‘ P dt)\’ u(0)=wup (3.1)

in the Hilbert space v ,i.e. as the closure in L, ( Q) of the set of all smooth selenoidal
vector fields satisfying the condition |u, | r, = 0.Here P is an orthogonal projection
operator from L,onto ¥ and 4 is a positive detinite self conjugate operator in V. In the

equation du ( ) dm‘)

e — —=—Au-+elP
+ ot

dt (o= 62)

obtained from (3, 1), the operator A has a bounded inverze and conditions of the simple
case (1) hold. Consequently, by (2.2) and (2. 3) the approximate solution of (3, 2) has

the form
“N:Z ¥y (1), b0, = (xS0
k=0
d N-1 ,_ do _
- i AP e — [ — 471 Pr ¥ o
by = ( At <r\dt> < dt) (¥ @)
Limiting ourselves to the first approximation we have
u1=8A’1P< X %”) (3.3)

Determination of the operator eA™1P demands solution of the following problem:
vAu_—Vs—[— < er diva =0, ufp, =0 (3.4)

A solution in the form of (3. 3) was obtained in [3] by Chernous'ko, who also showed
that the solution of (3,4) can be written in the form of a sum of the "generalized Zhu-
kovskii potentials”,
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4, Motion of fluid partially filling the cavity, In this case the equa-
tions of the problem can also be written in the operator form [1,6 and 7]

‘l_“+vAu H(‘%”— >/r>*0, v%%—}—ng‘u:O, u=s+w (41
\
where u,s and w are functions defined on the space W,% (L), the latter being the clo-
sure in the S, L, Sobolev space Wy' (£2) of the set of solenoidal vector fields, becoming
zero near the I'y part of the boundary, We shall describe the operators A,II, T and T
later, now only remarking that the operator 4 is again positive definite and self conjugate.
After the substitution

u=dA70, s=ATm, we=AT, e=v, X=(U "
we can write (4. 1) in the form analogous to (2. 1) &
D T KR LR B
R 4 20T / hadl 2 A
¢ = \r >< T ) Q= A=rr A (4.3)

Whole of the space E of vectors X can naturally be expressed as a simple sum of two
subspaces £,and K, composed, respectively, of vectors of the form {7, 0} and {0, &}.
In E, the operator A4, is negative definite and has a bounded inverse

41
wa=< O‘U (X & Ey)

In E, the operator A, is identically equal to zero, therefore the projection operators
P;-and P, have the form I o0 0 0
Pi=lo o) o 1

Pt

Following the scheme given in Sect, 2, let us limit ourselves to the third approxima-
tions to the solution of (4. 3). From (2. 10) and (2, 11) we find

YI(O) = Py, 51(0) = 0; Ylm =0, Sl(l) = P1ByPy; Yl(g) = P,B.Py, 51(2) = 0; Yl(”) =0

Expressing the operators in matrix form we obtain

§]
Yl(o) = Plv Sl‘o) - 0; }71(1) = Ov 51(1) - ” gﬂQ 0 H
, Sl(Z) =} y’l(.'k) — 0
|g() A7 0
In a similar manner we obtain
Yol =py 5,0 =0, Yo —0, S = 0 H
2 2y - J— g
-1
Y‘__("N — ” 0 g‘(:l" Q ll , S;"Q) — ('Y )7:(3) —0
Differential equations (2. 6) for the operators U and U, now become
(3) . .
¢ dUc}t = A P;U; g8, 004, v )=r
or in the subspaces £, and E, ,
(]Ulm) . (5] o (3) 7.(3) e
e =2 — AU -+ e%2QU,"?, U™ (0) =
dU3) 2 4
& (;[ _ 8(—)ngr2(3)’ ng"') (“) —7
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Thus, we have split the basic differential equation into two equations, first of which
has rapidly decaying solutions while the other has solutions varying slowly with time,
For the third approximation to the solution of the homogeneous equation correspond-

ing to (4, 3) we obtain U2 -+ e2g471QU, P,

| Uy + e22Q A0,y

For a particular solution of the inhomogeneous equation, (2. 13) and (2, 14) yield
ho=0, g=0; h =47, g=0 h——42% g

X3 — (4.4)

dt

- dh
A-s
hg:: dt + NA IQA lfl
0

- 0
BT l‘— QAT

and we then have

3)
X3 = Vi vi® =247 1Qvy® 4 eA7 I (1' x 90 > —
v2(3) ’ dt
— e24" "1 (r X = L e347 I [ r X a0 +e3gAT1Q AT [ r % do
) an : ar |

where ) is a solution of the following differential equation:
) \
e d";t = —egQv.®— e3gQ A~ (r % ‘fi_ﬂ . v®(0)=0 (4.5)

Operator Q appearing in this equation is a nonnegative self conjugate operator in the
space W,” (see e.g. [6 and T]). It can easily be seen that it becomes positive in the
subspace E,.

The sum X3 - X*3 gives the third approximation to some solution of the inhomogen-
eous equation, but, as we have already remarked, its only reliable terms will be those
containing ¢ in the degree not greater than first, Thus, the approximate solution differ-
ing from the exact one in terms of order of &2, is

U210 4+ eA~HII (r x i"’_>

dt
U3,

in obtaining which we have assumed that the solution of the problem (4, 5) is of order
of &2,

The solution just obtained does not satisfy the given initial conditions, Indeed, when
t = 0,its components are, respectively,

(o penfox (2]

It follows therefore that such approximate solution should be deduced from it, which
would satisfy the homogeneous equation (4, 3) with the accuracy of up to the terms of
order of &2 and which would have the initial value

qgn <r X / (f;;) >>

Such a solution can be constructed from (4. 4) by replacing U/;® with U;® which in
this case coincide (since .5;*) = 0). Retaining again only the reliable terms, we obtain
the final formula for the first approximation to the solution of the problem under consid-
eration
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UL (g — ed™"11 (r X (‘3” ) ) ed~Il (r X %"%.)

(3};0
2

Performing the substitution (4. 2) and taking into account the fact that u = s -+ w,
we find . 1 " P 12

2 = A 2U1‘-‘”<A "o £ A~ (r,\( < LR > e AL [r _.->4 AT A 0, (4.6)

ai )
First term of this formula describes the rapidly decaying motion, second term the forced
motion and the third term - the slowly decaying motion, Discarding the rapidly decaying

terms we obtain u = A7) 4 g + g4I (r % f;;_) 4.7
S

X =

We shall now describe the procedure of obtaining the first approximation [1, 6 and 8],
Forced motion, We solve.the following boundary value problems
—VAs; + Up;=r xXe;, divs;==0, s;=0 only
asiu R 6si =0, asix 63422 —0 — it v
9z oy 3z Bz ' *
where e; denote unit vectors along the axes,

Then the relative velocity of the forced motion will be equal to
Uy = £382 -+ €282 -} E383
where ¢; are the projections of the angular acceleration of the body on the axes of the
moving coordinate system,
If the problem calls for the detrmination of pressures appearing in the fluid, then we
must solve the boundary value problems for the Laplace’s equation

S‘ .
20 onl,
Z

— 0 — % r
Then A9;=0; #;=0 on I, 3 737% =(rxe) on To
d
‘ H(rx%)w— Z’Ei (r X e, —grad ,)
Pressure p is given by =1

p =pgz+ ples{p1 — Q1) + 8 (P2 — Pa) + &5 {ps — P3}|
Slowly decaying motion, Operator function V = 4-/2y,34" is a solution of
dv/dt = —eglTV, V(0)=1I
Using the classical terminology we can now formulate the rule for obtaining a solution,
Solution of the following problem is required:

—vAw + Vpr =0, divw =0, = on I'y
dw,, w 8
_....... = P e 0; = —
¥ © Tz oy az( z) gz on To
Then the relanve velocity of a slowly decaying motion is: ¢
ug = wp-+ Sw dt

0
Free oscillations, When considering the problem of free oscillations of a strong-

1y viscous fluid in a motionless vessel, we can utilize the expression (4, 7) with @ = 0
to obtain normal oscillations proportional to ¢ ', In the case of slow oscillations, the
quantity A is the eigenvalue of the self conjugate problem

—vAwW S+ p =0, divw=0; w=0 onT,

ow, | O, =0 bw, 4 Z ow, zZ =0 A — awz)zng on To
2 T ' z

dz "By
To determine the rate of decay of the rapid motions we must consider the first term
of (4.6). The operator function § = 4~/ 4" satisfies the equation

sidbtl = — AS 4 e%TTS, SO =1
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which can be replaced by another, simpler equation
ds
=—AS

£ =

db
with the accuracy of up to the terms of order of &2,

For normal oscillations the problem is

vAs = As
and using the classical formulation we obtain the following self conjugate eigenvalue
problem —vAs 4 Ap = ks, div s =0, s=0 onI,
ds ds Js iy ds
—E® 420, _¥ 1z —0 Iy 2 —
32 +8x = —I—ay 0 P+ 2v . 0 on T

5. Combined motion of the body and fluid, Equation of angular mo-
mentum for the system "body + fluid" has the form [1 and 9]
do (r U\ g0 M=0 5.1
I_ciT_l‘pS‘Xdz) + G.1)
Q .
= mga (6,e; -+ Oze2) + pg (k1 X Srfdl‘o) (5.2)
To
where m is the mass of the system, a is the distance between the center of mass of the
system and the fixed point, §; are the components of the angular displacemeut vector in
the moving coordinate system, k; is the unit vector along the moving Oz axis and z =
= f(z, y, t) is the equation of the free surface in the moving coordinate system,
When the velocity of motion is known, the function 7 is given by
t

w0 =\mdr i@y, 0 (5.3)
0
Inserting the expression (4, 6) for the velocity u into (5,1)—(5. 3), we obtain a third
order differential equation defining the components of the angular displacement vector
of the body in the first approximation
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